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The vernacular architecture of household energy 
models 

Abstract 
Energy use in buildings is driven by a socio-technical system providing energy services 
to building occupants. Despite the irreducible presence of people in the system, they are 
currently poorly represented in mainstream building energy models. This poor 
representation stems at least partly from the dominant 'folk ontology' of the 
predominantly physical science trained modelling community with their strongly visual, 
physical and causal mental image of the modelling system they are representing in their 
model descriptions. The introduction of new methods of embedding more sophisticated 
models of occupants within these models using Bayesian Networks shows promise, but 
presents its own set of challenges. Such models endogenise uncertainty, making correct 
interpretation of modelled results difficult, and create model structures that are theory 
agnostic to the fields the model's variables are draw from. Such models do, however, 
have advantages in multidisciplinary modelling environments where such theory 
agnosticism can provide a neutral territory for debate, and their graphical representation 
makes them useful vehicles for negotiating understandings between disciplines.    

Introduction 
"People use energy – not buildings" is an accepted truism of energy in buildings research. 
Energy use is driven by occupants' needs and desires for energy services (heat, light, hot 
water, 'infotainment') and the technologies through which they are supplied. In this 
complex socio-technical system, houses built to identical technical specifications will 
vary in their energy consumption by a factor of three once occupied. Despite, and in part 
because of this, occupants are only crudely represented in building models. This paper 
explores a range of these representations, from new approaches to established methods, 
and through them the entailed vernacular epistemologies of the modellers who construct 
them.  
The paper proceeds as follows. An example of modelling occupant influences on energy 
use in homes using Bayesian Networks is given. This focuses on modelling the factors 
influencing internal temperatures in homes, as internal temperature is the single largest 
determining factor of UK domestic energy use. This will include a brief introduction to 
Bayesian Networks, their methods of construction, the data underpinning their 
construction, their central assumptions and their graphical representation. The paper then 
discusses this example in the context of the definition of modelling, the practice of model 
construction in the wider building energy modelling field, the use and function of models 
in research and policy making, and the dominant epistemologies entailed in these 
modelling practices. 
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Modelling home internal temperatures using Bayesian 
Networks  

Introduction 
Energy is used in buildings to provide services for occupants. Despite this, the influence 
of occupants on home energy use is usually very poorly represented in building energy 
models. The current dominant approach is through the use of what are called 'occupancy 
schedules'. These are used to standardise some of the known occupancy-related 
influences on energy use in homes. One of the most important of these is internal 
temperature. Internal temperature is the parameter to which BREDEM class models are 
most sensitive. BREDEM class models are important in the UK, as they form the basis of 
the most widely used building stock models, and underpin the UK Standard Assessment 
Procedure (SAP) for Energy Performance Certificate rating of homes. As Firth et al 
(2010, p.33) note in their analysis of the sensitivity of their BREDEM based Community 
Domestic Energy Model "The heating demand temperature (which in most cases is the 
thermostat set-point temperature used in the dwelling to control the heating system) 
results in the most sensitivity… [This] suggests that heating demand temperature is the 
key determinant of CO2 emissions in housing." 
Currently these models vary mean internal temperature as a function of purely technical 
variables. For example, the SAP rating system varies mean internal temperature of living 
areas as a function of the Heat Loss Parameter (a measure of the thermal efficiency of the 
envelope), heating type, heat gains and heating controls (BRE, 2008b). It is therefore 
both an important parameter, and one believed to be influenced by both technical and 
non-technical (socio-demographic and behavioural) variables. This makes a natural target 
for extending the representation of people within building energy models. One way to do 
this is through construction of statistical models of the factors influencing domestic 
energy use. The approach illustrated here treats physical and occupant related influences 
equivalently, by building statistical models from empirical data as measured in the CaRB 
Home Energy Use survey of English homes (Shipworth, et al., 2010). The models are 
built from data using Bayesian Networks. This internal temperature statistical model is 
designed to replace the exogenous default set-point temperatures used in BREDEM 
models. It allows for prediction of living room temperature in two degree bands 
(< 17  19  21  23  25 >) in English homes based on a relatively small set of 
variables.   

Bayesian networks  
Bayesian Network models consist of a set of variables called ‘nodes’, and a set of links 
joining related variables called 'edges'. A generic example of such a model is shown in 
Figure 1. In Figure 1, each circle represents a variable, each arrow represents a 
relationship between variables, each variable contains within it a conditional probability 
table determining the nature of the probabilistic relationship between each variable and 
its 'parents', i.e. those nodes linked to it where the links are pointing towards it. 
Mathematically, such an object is called a ‘graph’, hence Bayesian Networks are referred 
to as ‘graphical’ models. In order for the algorithms calculating the probabilistic 
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interrelationships between variables within Bayesian Networks to work, the network 
cannot have any cycles. The links are therefore directed ('parent' to 'child') and the 
networks are termed Directed Acyclic Graphs (DAGs). 

 
Figure 1: Bayesian Network showing variables (circles), directed relationships (edges), and no cycles. 
Bayesian Networks are one type of statistical graphical model. As Jordan (1999) notes in 
the introduction to 'Learning in Graphical Models':  

'Graphical models are a marriage between probability theory and graph theory. ... 
Probability theory provides the glue whereby the parts are combined, ensuring that 
the system as a whole is consistent, and providing ways to interface models to data. 
The graph theoretic side of graphical models provides both an intuitively appealing 
interface by which humans can model highly-interacting sets of variables as well as 
a data structure that lends itself naturally to the design of efficient general-purpose 
algorithms.' (p.1) 

A Bayesian Network defines a joint probability distribution specified over a set of 
variables and their relationships as defined by the structure of the graph. The structure of 
the graph explicitly encodes conditional interdependencies between the variables. A 
graph-theoretic definition is provided by Bottcher & Dethlefsen (2003, p.2):  
"Let D = (V,E) be a Directed Acyclic Graph (DAG), where V is a finite set of nodes and 
E is a finite set of directed edges (arrows) between the nodes. The DAG defines the 
structure of the Bayesian network. Each node v  V in the graph corresponds to a 
random variable Xv. The set of variables associated with the graph D is then X = (Xv)v V. 
Often, we do not distinguish between a variable Xv and the corresponding node v. To 
each node v with parents pa(v) a local probability distribution, p(xv|xpa(v)), is attached. 
The set of local probability distributions for all variables in the network is P. A Bayesian 
network for a set of random variables X is the pair (D,P)."  
Because not all nodes in the network D are directly linked, some nodes are conditionally 
independent of other nodes. This allows the joint probability distribution over all the 
nodes to be factorised into the product of a series of conditional dependencies between 
nodes (Equation 1). It is this capacity of the DAG to structure the joint probability 
distribution over the set of variables V that makes calculating the joint probability 
distribution tractable. 

Vv
vpavV xxpXXXp ,...,, 21

 
Equation 1: Factorization of the joint probability distribution 
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Constructing Bayesian networks  
There are two epistemically distinct approaches to the construction of Bayesian 
Networks: elicitation and learning. Elicitation is the process of eliciting the structure and 
probabilities for networks from domain experts and is widely used in constructing applied 
Bayesian Networks in environmental and other fields (O'Hagan, 1998). Learning is the 
application of algorithms to extract the structure and probabilities from datasets. Learning 
approaches have grown from developments in the data-mining and artificial intelligence 
fields (Mackinnon and Glick, 1999). These approaches can be combined, and where this 
is done elicitation is often used to determine the structure of the networks, and learning to 
extract the probabilities within the models from datasets. In multidisciplinary 
environments however, elicitation of either network structure or probabilities can be 
problematic, as there is no single natural domain of experts from which to elicit. In the 
domain of energy use in homes, building physicists, building services engineers, 
economists, sociologists and social psychologists all hold different beliefs about which 
factors to measure and model, how these factors are linked, and the strength of the 
relationships between them. Pilot work conducted on elicitation of network structure 
showed so little agreement between researchers within and between fields that this 
approach was rejected in favour of the use of learning algorithms for both determining 
the network structure and probabilities. 

Bayesian network construction  
There are five main steps in the construction of Bayesian Networks. The first, variable 
selection, encodes existing findings from a range of disparate cognate disciplines into the 
model through the process of variable choice. The second, instrument development, 
encodes a range of different epistemologies and methods into the model through 
instrument development. The third, variable measurement, similarly encodes domain 
specific methods and research designs into the data. Statistical models are only as good as 
the data they are built on so variable selection, instrument development, and variable 
measurement is as integral a component of Bayesian Network construction as choices of 
modelling algorithms.  

Variable selection  
The CaRB team of social scientists, building physicists and building technologists 
reviewed literature from many fields including building science, sociology, psychology 
and economics. Variables were selected on the basis of evidence from prior studies of the 
strength of their influence on home energy use. An implicit epistemic filter was therefore 
applied through the requirement to satisfy largely unexplicated notions of 'evidence' 
which themselves would have varied between fields. Variables were identified across a 
wide range of topics including: energy use; internal temperature; fuel types; built form; 
heating type and its usage; heating system controls and their usage; ventilation; 
occupancy patterns; bathing technology and practices; household appliances and 
practices; household socio-demographics; attitudinal measures; health measures; and 
comfort practices. 
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Variable instrument development 
Instruments were developed to measure each variable to meet a range of pragmatic 
constraints. Because Computer Assisted Personal Interview (CAPI) was to be the 
dominant method, instruments for many variables were drawn from the UK Office of 
National Statistics harmonised methods. Additionally, some instruments were designed to 
harmonise with other current or historical surveys to which the findings were to be 
compared. In many cases these instruments were known to be imperfect, but were used to 
allow comparability across datasets for analysis purposes. Given the breadth of variables 
measured, instruments adopted and adapted from disparate fields themselves embedded 
these fields' theories and methods into the data.  

Variable measurement: The CaRB Home Energy Survey 
Sample size calculations for Bayesian Network analysis is best done using subject to item 
ratios. These are determined by the size of the local conditional probability table within 
each variable, not by the joint probability distribution of all the variables. Using this 
method, and the widely accepted 10:1 subject to item ratio used in PCA and EFA 
(Costello and Osborne, 2005) & (Osborne and Costello, 2004), a sample size of 500 
homes was established. 
For a sample of this size, face to face social surveys and inexpensive physical 
instrumentation were selected as the methods best able to minimise uncertainty in 
measurements within the logistical and financial constraints.   
The Survey was based on a representative sample of English households selected by 
stratified random sample drawn from the Postcode Address File sampling frame. To 
ensure a good geographic and socio-demographic spread, postcode sectors were stratified 
by Government Office Region and by the percentage of households where the Census 
Household Reference Person was in NS-SeC categories 1 or 2. Fifty-four postcode 
sectors were selected at random in proportion to the number of addresses they covered, 
and 21 addresses were sampled in each selected postcode sector. Out of 1134 addresses, 
427 households were interviewed – a response rate of 44%. For additional detail of the 
CaRB HES survey see (Shipworth, et al., 2010). 
Raw data preparation and interpretation was conducted and SPSS syntax for construction 
of computed variables written. At time of model building over 100 variables (~10% of 
raw variables) were developed and assessed for inclusion in the temperature classifier 
model.  
Temperatures within the CaRB HES sample were monitored continuously from mid July 
2007 to early February 2008 and the average over each 45 minute period logged. The 
temperature measurements used as the dependent (target) variable in the network was the 
average winter temperature in the main living room at 20:15. These were measured with 
Hobo UA-001-08 temperature loggers with a manufacturer reported accuracy of ±0.47 C 
at 25 C which were calibrated prior to instillation. These were placed during the 
interviews by occupants with trained interviewer guidance between knee and head height 
away from direct heat or sunlight. 
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Network construction part 2: model selection and conditional 
probability learning 

Variable model selection (network structure learning) 
Determining the structure of a Bayesian Network is at least as important as determining 
the conditional probabilities linking the variables. Druzdzel and van der Gaag (2000) note 
that 'Experience with constructing probabilistic networks for various domains of 
application has established a consensus that the graphical structure of a network is its 
most important part...' p.483. This importance arises for two reasons. Firstly, the output 
of the network is more sensitive to changes in the structure than to changes in conditional 
probabilities. Secondly, the amount of data required to construct a network is heavily 
dependant on the number of conditional probabilities required, which is in turn heavily 
dependent on the structure (Laskey and Mahoney, 2000).  
Learning network structure from data however is computationally intensive and involves 
heuristic search over the space of possible networks, i.e. all possible ways to connect the 
variables in the models. The number of all possible networks, the size of the ‘model-
space’, grows super-exponentially with the number of variables. Consequently, where 
there are more than around eight nodes, heuristics are needed to search for the best model 
within the model-space. 
Structure learning, i.e. selecting the best possible way to link the variables within the 
model space, is a heuristic search of the model space for models which maximise the 
Bayesian Information Criterion (BIC)(Akaike, 1979). BIC is a widely used measure of 
model fitness and has been adapted for use with incomplete, case based datasets by 
O. Francois (François and Leray, 2006, François, 2008).  

Variable conditional probabilities (parameter learning) 
Within each variable in the network is a Conditional Probability Table (CPT). The 
probabilities in the CPT determine the strength of the relationships between variables in 
the model. The size of the CPT is the Cartesian product of the number of states of the 
variable and all its parents, for example, a variable with 3 states, and three 2-state 
(binary) parents, would have a CPT with 3*2*2*2= 24 conditional probabilities to be 
learnt from the data. The data requirements for parameter learning of Bayesian networks 
are therefore strongly related to both how the variables are discretised, and the structure 
of the network.  

Representation of results 
Presented is an example of a temperature classifier model constructed using all available 
variables in the CaRB Home Energy Use survey. The representation shows the variables 
(as outlined in Table 1) and the graphical structure of the model with the strength of 
relationships between variables indicated using Blind Average Link Strength percentage. 
This means that for any two linked variables, knowing what state one of the pair is in, 
increases what we know of the other, by reducing our uncertainty of its state by the 
percentage shown. 
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Living Room Temperature classifier model 1 
 

  
Figure  1: CaRB Home Energy Use Survey room temperature classifier model. 
Target variable TEMP_AW_2015_LR with states: < 17  19  21  23  25 > ( C). 
Correct classification rate: 85%  
Expected value classification rate: 75% of cases within 10% of their observed value. 
 
Table 1: Variables used in Living Room Temperature classifier model 1 

Variable Name Variable Description 
Blind average link 
strength percentage 

TEMP_AW_2015_LR Avg. main living room temp. in Winter at 20:15 (measured) Not Applicable 
HRPAGE Age of Household Reference Person 75.4% 
ACCOM_EHCS Accommodation Type (EHCS 2001 harmonised) 47.4% 
WIND_DP Proportion of windows draught-proofed 46.2% 
Elec2006_RM Electricity consumption (2006 BERR data) 42.2% 
RESP_TSTAT_R Thermostat setting (respondent reported) 41.7% 
HHLD_SIZE Number of occupants in household 40.1% 
Gas2006_RM Gas consumption (2006 BERR data) 37.1% 
Tenure_EHCS2005 Tenure (EHCS 2005 harmonised) 37% 
DBL_GLAZ Proportion of windows Double Glazed 34.5% 
Roof_Ur_RSAP05 Roof U-value (Respondent reported - RD SAP 2005 

harmonised)  
29.3% 

BUILDAGE_RSAP05 Building Age (RD SAP 2005 harmonised) 26.2% 
Wall_U_RSAP05 Wall U-value (RD SAP 2005 harmonised) 25.4% 
CH_TYPE_Use Central Heating type used in winter 23.8% 
LA_Code Local Authority 13.3% 
Note: RD SAP = Reduced Data Standard Assessment Procedure 
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Discussion of the Bayesian Network approach 
The approach discussed above differs markedly from that used in the rest of the buildings 
energy modelling field. Unlike conventional modelling approaches, the relationships 
between the variables are not dictated by theory directly. They are, at least ostensibly, 
empirical relationships learnt from data. Theory does play a role in the selection of 
variables to measure, but as these are drawn from a variety of different fields with 
different theories, this process is quite indirect. Information theory does play a role in 
determining the relationships between variables, but this is likewise agnostic to any 
correspondence relationship between the model and what it represents. In part because of 
this, and because they contain sets of variables not included in current domain specific 
models, the models seem to have a greater capacity for surprise. This capacity for 
surprise seems also to stem from the fact that the relationships between the variables are 
also not simply an encoding of existing domain specific theories into the model, and 
therefore frequently challenge existing beliefs.  
As a guide to further empirical work the models have countervailing effects. Sensitivity 
analysis conducted on the models highlights those areas where improved data is likely to 
yield the greatest benefits. In contrast to this however, statistical models endogenise 
instrument error, making it indistinguishable from the underlying aleatory uncertainty of 
the variable, thus lack of strength or sensitivity to a variable in the model may result from 
measurement error. This is particularly problematic where different variables were 
measured with different instruments with highly variable but unquantifiable levels of 
instrument error. Reaching robust conclusions about the relative importance of different 
variables is therefore problematic and a matter of both methodologically informed 
judgement and model testing.  
The Bayesian Network approach does however have a range of benefits. Its instrumental 
benefit lies in creating a classifier model of internal temperature. Its conceptual benefit 
lies in having a clear model structure that is easily to interpret and discuss. Its 
multidisciplinary benefit it lies in bringing together a range of variables from across 
disciplines in a 'theory agnostic' environment which can form the basis for sparking 
healthy debate within and between disciplinary communities. Such models can therefore 
form a neutral territory where disciplines can find a common graphical representation of 
model variables and structure they can understand, engage with and debate over, in order 
to elucidate methodological and theoretical differences.  

Discussion of broader modelling issues  
This section is a 'reflective practitioners' view on the process of model definition and 
construction in the broader field of building energy and energy systems modelling. 
John Casti (1992, p.2) defines mathematical modelling as follows:  
“Our viewpoint is that the study of natural systems begins and ends with the specification 
of observables describing such a system and a characterization of the manner in which 
these observables are linked.”  
In many ways, this is an appealing and succinct definition of the modelling process, and 
it maps neatly onto the processes of Bayesian Network construction outlined by Druzdzel 
& van der Gaag (2000) of: 
 Identification of the domain variables;  
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 Identification of the relationships between these variables and;  
 Identification of the probabilities describing these relationships  

While this process describes the mechanics of modelling, it does beg a range of more 
fundamental questions: 
 How are we to define our 'natural system' and its boundaries?  
 What forms of 'observation' constitute valid knowledge?  
 What forms of knowledge form a valid basis for determining the relationships 

between variables?  
Casti's definition however largely severs modelling from the rest of the scientific process, 
particularly from questions of theory and measurement which so dominate statistical 
modelling.  
Ruttkamp (2002 p.17), with reference to the process of science per say, observes: 
“The only way in which we can have scientific contact with the world…is through actions 
involving selection, abstraction, and generalisation, which are always executed within 
some theoretical framework or disciplinary matrix….”  
This serves to set Casti's initial process of 'the specification of observables' into its 
necessary theoretical and disciplinary context. In the context of energy use in buildings 
generally, or the internal temperature classifier model in particular, this leads to two 
disciplinary questions: Through which theoretical framework(s) are we observing the role 
of people's influence on energy in buildings? and; 'through which disciplinary matrices 
do we look at the role of people's influence on energy in buildings and how do these 
colour both how and what we choose to observe? 
To answer these questions we need to step away from the construction of individual 
models, around which these definitions and questions appear to be framed, and look at 
the practice of building energy modelling. The temperature classifier model presented 
above is designed to endogenise one currently exogenous variable, household internal 
temperature, within BREDEM class models. As discussed above, BREDEM class models 
are the dominant building energy models used in the UK. These models also form the 
core of BREHOMES, the dominant national building stock models, which are based on 
the BREDEM individual building energy modelling engine. However these models are 
themselves not monolithic. They are conglomerations of smaller models (e.g. physics-
based models of heat-flow through walls), empirical observations (laboratory based 
measurements of the thermal conductivity of materials), parametric models from data 
(hot water use as a function of floor area) compliance ratings of pieces of technology 
(efficiency ratings of boilers), normative accounting standards (the carbon intensity of 
energy generated by different technologies), simplifying assumptions (steady-state heat-
flow), known omissions (ventilative heat loss as a function of external wind-speed) and 
deliberate exclusions (occupant window opening behaviours).   
This picture resonates with Winsberg's (2009 p.837) description of the epistemology of 
simulations. He argues that: 
“[T]he knowledge produced by computer simulations is the result of inferences that are 
downward, motley, and autonomous. They are downward in…that [they] are drawn (in 
part) from high theory, down to particular features of phenomena… They are motley in 
that they draw on a wide variety of sources. These include theory, but also physical 
insight, extensive approximations, idealizations, outright fictions, auxiliary information, 
and the blood, sweat, and tears of much trial and error. … Finally, they are autonomous 
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in the sense that the knowledge produced by simulation cannot be sanctioned entirely by 
comparison with observation.” 
Building energy modelling exhibits all three of these characteristics. They are downward 
in that much of the design and behaviour of these models stems from their basis in 
steady-state heat balance equations from thermodynamics. The system is known to be 
dynamic, with the temperature gradient across the envelope of the building known to vary 
spatially and temporally, and the thermal resistance and inertia of the envelope being 
similarly dynamic, yet applied building physics theory and measurement ignores these 
effects.   
Building energy modelling is “motley”. There are currently no modelling methodologies 
within building energy modelling (at individual building or stock level) that distinguish 
between data of different types and quality, and maintain that distinction through the 
model in a form transparent to either model builders or users. Building models are 
epistemic 'sausage machines' – combining inputs of all qualities and types into outputs of 
homogenous and indeterminate quality and type.  
Building energy modelling is autonomous. Many energy models, including BREHOMES, 
the UK national building stock model, are calibrated by top-constraint against data from 
the Digest of UK Energy Statistics (DUKES) on energy use in the UK housing stock 
(Shorrock and Dunster, 1997). Top calibration is done by adjusting the variable within 
the model to which output is most sensitive, internal temperature. This endogenises all 
model error within one variable. This has led, through a process of back-calibration of the 
model (built in 1990) against yearly data back to 1970, to the conclusion that average 
household internal temperatures in the UK have risen from an average of 12° in 1970, to 
an average of 18° in 2006 (BRE, 2008a), a figure widely cited in government (CCC, 
2009). Against a backdrop of little observed reduction in energy use in the UK housing 
stock, this has lead to blaming occupants for 'taking-back', through improved comfort, the 
energy efficiency improvements assumed to follow from decades of Government 
regulatory and programme initiatives in the area. This has, in its own way, created a 
strong and largely negative 'model' of occupant behaviour in the minds of policy makers.  
This example of model underdetermination is analogous to that highlighted by Betz 
(2009) as applying to modelling scenarios, but one applicable to the more immediate 
problem of model calibration. Betz cites Quine's famous statement on undetermination of 
logical linguistic statements: 
“[T]he total field [of logically connected statements] is so underdetermined by its 
boundary conditions, experience, that there is much latitude of choice as to what 
statements to re-evaluate in the light of any single contrary experience.  (Quine, 1953 p. 
42f)” 
In the context of model calibration, this translates into that fact that if our models don't 
match our observations, there are usually a wide variety of things we can adjust to 
calibrate them, and too little data to decide which the is the right element to adjust. 
Following Betz arguments, this makes the values of internal variables in such models 
calibrated by top-constraint epistemically equivalent to scenarios – i.e. it renders them 
descriptions of what is possible – not what is factual. The wide-spread application of top-
constraint model calibration in energy modelling creates a problem for deterministic 
models comparable to that of multicoliniarity in statistical models. That is, while the 
gross output may be true, the accuracy of individual variables within the model is not, 
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and of necessity, it is at the level of individual variables that policy interventions are 
targeted. In addition, as Winsberg argues, simulation is partially epistemically 
autonomous and is undertaken in areas where data is sparse and insufficient to support 
decision making, with again the effect that energy stock modelling constructs 
representations only of possible futures between which it is not empirically possible to 
distinguish. For both these reasons, models' epistemic authority rests as much or more on 
the veracity of their construction, as on methods of validation, suggesting far more care 
needs to be taken to track data type and quality through our models to allow us to 
understand how and where the impacts become manifest in our results. 
Extending Winsberg's arguments, Godfrey-Smith argues for the emergence of what he 
calls 'model-based science' (2006). As he puts it "…[This involves] a rejection of the idea 
that modelling is a mere heuristic adjunct to the real business of theory-construction" 
(2006 p.730). The central components of Godfrey-Smith's model-based science seem 
well reflected in the practice of energy systems modelling generally, and energy in 
buildings modelling in particular. Godfrey-Smith's work builds on Giere's which 
distinguishes between the specification of the model system, and (frequently multiple) 
similarity relations between the model system and the target system (the world). Godfrey-
Smith distinguishes between the model system (some abstracted and simplified 'imagined 
concrete thing'), the model description (a description of the model system in some 
language – mathematical symbols, graphical representation, words), and the similarity 
relation (that aspect of the model system that a modeller regards as similar to the real-
world target system). Godfrey-Smith's treatment of model systems as 'imagined concrete 
things' is particularly relevant for energy in buildings research. He notes: "It is important 
to the practice of model-based science, at least some of the time, that model systems can 
be conceived and treated in a more concrete way. Roughly, we might say that model 
systems are often treated as "imagined concrete things" – things that are imaginary or 
hypothetical, but which would be concrete if they were real". (2006 p.735). It is clear 
from personal experience that modellers working in building energy modelling suffer 
from a form of physical literalism and an over-familiarity with their subject matter of 
their models. We spend over 90% of our lives in buildings, and this immediacy feeds into 
what may be called a completionist mentality, particularly in physical science trained 
building energy modellers. They can walk around buildings pointing to every energy 
consuming appliance and model its energy demand as a function of its rated power 
consumption, its load, and the duration of its use. They therefore feel that their 'imagined 
concrete thing' must represent everything they can see. This frequently leads to an 
insistence on modelling even trivial energy consuming technologies, irrespective of the 
quality of the available data. It has a complementary consequence in that things that 
cannot be literally seen, or are without explicit physical causal mechanisms, tend not to 
be modelled. Statistical relationships without plausible causal mechanisms visualisable 
by the modellers within their model systems are discounted. Similarly, issues of the 
diversity of buildings, technologies, and patterns of occupancy are not easily 
accommodated in model systems which are so instantiated and cemented in specific 
individual buildings within the modellers' experience. This is reflected in the structure of 
national building stock models like BREHOMES (and virtually all others) which are 
constructed by modelling a relatively small number of individual 'archetypal' buildings, 
and multiplying them by their frequency in the national stock. Again these 'archetypal' 
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buildings are defined by overt physical characteristics (terrace house; semi-detached 
house; flat, etc) rather than through any identification of characteristics which may 
cluster the households into statistically distinct groups in terms of their energy 
consumption. The dominance of the visual resemblance relation (the mental image) of the 
'imagined concrete thing' that is the energy use in buildings' model system is so powerful 
as to largely determine the structure and content of models in the field. Godfrey-Smith 
refers to these 'imagined concrete things' as a form of 'folk ontology' of a field. In the 
building energy modelling field that which exists is the visual, physical and causal – that 
which doesn't is the invisible, variable and correlational. This is the 'vernacular 
architecture' of building energy models.  
There remain yet other characteristics of building energy modelling which seem 
unexplained by the model-based science approach.  There is an 'agenda power' or 
'narrative power' that stems from the developers of specific energy efficiency 
technologies, and then flows into the energy modelling community. The Energy 
modelling community adopts the predominantly technical agenda of the renewable 
energy and energy efficiency technology development community. These technology 
communities are themselves driven in large measure by government and social agendas 
on climate change, energy security and fuel poverty. This agenda and the accompanying 
narrative, frame the way the modelling community look at, and integrate, each new 
technology or intervention into their models. Industry established product ratings for 
efficiency or generation are often calculated for ideal conditions in laboratories, for 
perfectly installed demonstration equipment, operating in isolation from other elements 
of building technology, building fabric, and occupancy related factors.  This agenda 
focuses on the scope for potential benefits, and not on the scope for average, or 
underperformance from real-world conditions or systems-level conflicts. This creates a 
kind of technological optimism in the models that overestimates performance by factors 
of 50% to 500%.  

Conclusion 
Energy use in buildings is driven by a socio-technical system providing energy services 
to building occupants. Despite the irreducible presence of people in the system, they are 
currently poorly represented in mainstream building energy models. This poor 
representation stems at least partly from the dominant 'folk ontology' of the 
predominantly physical science trained modelling community with their strongly visual, 
physical and causal mental image of the modelling system they are representing in their 
model descriptions. The introduction of new methods of embedding more sophisticated 
models of occupants within these models using Bayesian Networks shows promise, but 
presents its own set of challenges. Such models endogenise uncertainty making correct 
interpretation of modelled results difficult, and create model structures that are theory 
agnostic to the fields the model's variables are draw from. Such models do, however have 
advantages in multidisciplinary modelling environments where theory agnosticism can 
provide a neutral territory for debate, and their graphical representation makes them 
useful vehicles for negotiating understandings between disciplines.    
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